If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x=320
We move all terms to the left:
3x^2+4x-(320)=0
a = 3; b = 4; c = -320;
Δ = b2-4ac
Δ = 42-4·3·(-320)
Δ = 3856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3856}=\sqrt{16*241}=\sqrt{16}*\sqrt{241}=4\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{241}}{2*3}=\frac{-4-4\sqrt{241}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{241}}{2*3}=\frac{-4+4\sqrt{241}}{6} $
| P=11(6x15) | | 25x-10x+430=P | | -8(3x+8)=2(x-6) | | 11(6x15)=x | | 13x-(5×-11)=-13 | | 8.7x+4.63=-11.3x+3.41 | | (2n+4)+(n-2)= | | P=25x-10x+430 | | 6z-9=5(z+2) | | -2-5(5-2x)=-97 | | 2x+3x-30=180 | | 5(y+8)=6y-30 | | X+3y+15=0 | | x=1/2(30+2x-30) | | -3a+4a=-18 | | 81r^2-6=19 | | 9z(z-3)+29=0 | | -40n(n+1=0 | | 3200+300x=15,200 | | 3200+300x=15,2000 | | 18w=10 | | 5(7x+3)-35=225 | | 6z^2+3z=5 | | 33=-25+x | | (3-x)/2=1/5 | | 6x+13=2x+15 | | Y=x+4;(1.3) | | 0.5-2x=1.5 | | Y=6x;(2.12) | | X+6=7x-30 | | Y=2x+3;(3.9) | | x3+-10x2+25x+18=0 |